Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 52: 109991, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38235174

RESUMO

This dataset [1] quantifies the extent and rate of annual change in surface water area (SWA) across India's rivers and basins over a period of 30 years spanning 1991 to 2020. This data has been derived from the Global Surface Water Explorer, which maps historical terrestrial surface water occurrence globally using the Landsat satellite image archive since 1984, at a spatial resolution of 30 m/pixel and a temporal resolution of once a month. This monthly time-series was used to create annual composites of wet-season (October, November, December), dry-season (February, March, April), and permanent (October, November, December, February, March, April) surface water extent, which were then used to estimate annual rates of change. To estimate SWA trends for both river networks and their basins, we conducted our analysis at two spatial scales - (1) cross-sectional reaches (transects) across river networks, and (2) sub-basins within river catchments. For each reach and sub-basin (henceforth basin), temporal trends in wet-season, dry-season, and permanent SWA were estimated using the non-parametric Sen's slope estimator. For every valid reach and basin, the temporal timeseries of invalid or missing data was also computed as a fractional area to inform the level of certainty associated with reported SWA trends estimates. In addition to a Zenodo data repository, this data [1] is presented as an interactive web application (https://sites.google.com/view/surface-water-trends-india/; henceforth Website) to allow users to visualize the trends of permanent, wet-season, and dry-season water along with the extent of missing data for individual transects or basins across India. The Website provides a simple user interface to enable users to download seasonal time-series of SWA for any region of interest at the scale of the river network or basin. The Website also provides details about accessing the annual permanent, dry and wet season composites, which are stored as publicly accessible cloud assets on the Google Earth Engine platform. The spatial (basin and reach) and temporal (wet season, dry season, and permanent water scenarios) scales of information provided in this dataset yield a granular understanding of water systems in India. We envision this dataset to serve as a baseline information layer that can be used in combination with other data sources to support regional analysis of hydrologic trends, watershed-based analysis, and conservation planning. Specific applications include, but are not limited to, monitoring and identifying at-risk wetlands, visualizing and measuring changes to surface water extent before and after water infrastructure projects (such as dams and water abstraction projects), mapping drought prone regions, and mapping natural and anthropogenic changes to SWA along river networks. Intended users include, but are not limited to, students, academics, decision-makers, planners, policymakers, activists, and others interested in water-related issues.

2.
Sci Rep ; 9(1): 14976, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628360

RESUMO

Forest conservation includes stemming deforestation as well as preserving its vegetation condition. Traditional Protected Area (PA) effectiveness evaluations have assessed changes in forest extent but have mostly ignored vegetation condition. Tiger Reserves (TRs) are India's PAs with highest protection and management resources. We used a before-after-control-impact-style design with long-term Landsat 5 TM data to evaluate the effects of protection elevation on vegetation condition (greenness and moisture) in 25 TRs. After declaration as TRs, vegetation condition in 13 TRs (52%) declined in more than 50% of their areas, with 12 TRs (48%) being overall better than their matched Wildlife Sanctuaries (WLSs; PAs with lower protection). In 8 of these TRs analysed for change from before to after declaration, vegetation condition in 5 TRs was harmed over more than 25% of their areas, with 3 TRs being overall better than their matched WLSs. Our results indicate extensive vegetation browning and drying in about half of the study TRs, with these trends often being similar or worse than in matched WLSs. These results suggest that TRs' elevated protection alone may be insufficient to preserve vegetation condition and cast doubt on the effectiveness of protection elevation alone in safeguarding long-term viability of tiger habitats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...